

Haskell – An Introduction

What is Haskell?

● General purpose
● Purely functional

● No function can have side-effects
● IO is done using special types

● Lazy
● Strongly typed

● Polymorphic types

● Concise and elegant

A First Look

● Provides a REPL
● ghci is the reference implementation

● But there's compiler – unfortunately we won't
see the compiler in this talk!

Functions: 101

● Functions are called thus:

func arg1 [argN+]
● Examples

id 5

succ 'a'

even 7

odd 3

Functions: The Basics

● A function that doubles its argument

doubleArg x = 2 * x

● A function that doubles odd arguments and
returns even ones

doubleOddArg x = if odd x then
(2*x) else x

● Let's define and use these in the REPL.

Lists

● Lists in Haskell are homogenous
● Store several elements of the identical type.

● Here's a list of integers

[1,2,3,4,5]

● Concatenating two lists

[1,2,3,4,5] ++ [6,7,8,9,10]

● Prepending an element

1:[2,3]

More on Lists

● Head
head [1,2,3,4,5] == 1

● Tail
tail [1,2,3,4,5] == [2,3,4,5]

● Last
last [1,2,3,4,5] == 5

● Init
init [1,2,3,4,5] = [1,2,3,4]

Yet more on Lists

● Get an element by its index (indexing starts at 0)
[1,2,3,4,5] !! 2

● Does a thing exist in a list
4 `elem` [1,2,3,4,5]

● Length of a list
length [1,2,3,4,5]

● Taking values
take 3 [1,2,3,4,5]

Last List

● Reverse
reverse [1,2,3,4,5]

● Drop elements from beginning of list
drop 3 [1,2,3,4,5]

● Sum elements
sum [1,2,3,4,5]

● Product of elements
product [1,2,3,4,5]

Ranges

● Can create a list with a sequence of values

[1..20] is a list containing numbers 1 to 20.

['a'..'z'] is a list containing lowercase letters.

● Creating a range with a step

[2,4..20] is a list of even numbers between 2
and 20

['a','c'..'z'] is a list of the letters a, c, e, g, I,
k , m, o, q, s, u, w, and y.

[20,19..1] is a list of numbers from 20 to 1.

Infinite Lists

● Infinite list with a range

[1..] an infinite list of numbers starting at 1.

● The cycle function

cycle [1,2,3] generates an infinite list
[1,2,3,1,2,3,1,2,3...]

● The repeat function

repeat 7 generates an infinite list of 7s.

List Comprehensions

● Apply a function to each element in a list

[x*2 | x <- [1,2,3,4,5]]

● For each number in the range [1,2,2,3,5]
● x is bound to the current number

● The function x*2 is applied to x

● We can filter the list(s)

[x*2 | x <- [1,2,3,4,5], odd x]

[x*y | x <- [1..4], y <- [1..4],
x /= 3, y /= 2]

Tuples

● Store several values of different type
● Useful for when you know exactly how many

values you'll combine
● Tuples type depends on how many components

it has and the types of the components
● E.g. A list of tuples is type safe:

(3,'c',9):[(1,'a'),(4,'d'),(7,'g')]

is illegal!

Tuples continued

● Singleton tuples cannot exist
● It's just a value!

● Pairs, though, have their own functions
● fst – returns the first element a 2-tuple

● snd – returns the second element of a 2-tuple

● Lists of pairs can be generated from two lists
using the zip function

zip [1,2,3] ['a','b','c']

creates the list [(1,'a'),(2'b'),(3,'c')]

A Problem

● Find Isosceles
triangles, that have
integer length sides,
whose perimeter is
less than 6 units in
length. Using
1<=a<=5 and
1<=b<=10.

Types

● Haskell is statically and strongly typed
● Uses type inference

● Hindley-Milner type system
● The programmer doesn't need to inform the

compiler of a value's type.

● We can use the :t command to interrogate
Haskell as to the type of a value
● Scalar types: Bool, Int, Integer, Char
● Lists: [], [Char]
● Tuples: (Int, Bool), (Bool, [Char])

Common Types

● Int – Bounded integer type. On 32-bit
platforms the range is [-2147483648 ,
2147483647]

● Integer – Unbounded integer type

● Float – Single precision floating point

● Double – Double precision floating point

● Bool – Boolean type, True and False values

● Char – Character type, single quotes used, e.g.
'a'

Function Types

● A function, say, addThreeInts

addThreeInts :: Int -> Int -> Int -> Int

addThreeInts x y z = x + y + z

● :: is read as “has type of”

● This function take three Int types and returns
an Int type

● The last type is the return type

● :t addThreeInts returns

addThreeInts :: Int -> Int -> Int -> Int

More Function Types

● :t removeUppercase returns

removeUppercase :: [Char] -> [Char]

● This function takes a list of characters, a string,
and returns a list of characters.
● The String type is usually used

● It is type synonym for [Char]

Typeclasses
● A typeclass is an interface that defines some

behaviour
● They are similar to Java interfaces

● :t (==) returns

(==) :: Eq a => a -> a -> Bool

● The equality function takes two values of the
same type, a.
● The type a must a member of the Eq typeclass

● It is a class constraint

● The equality function returns a boolean value

Ord typeclass

● :t (>=) returns

(>=) :: Ord a => a -> a -> Bool

● Ord is a typeclass that defines the comparison
functions >, <, >=, <=

● Compare with the compare function!
● :t compare returns

compare :: Ord a => a -> a -> Ordering

● The Ordering type can hold the values GT, LT
or EQ.

Show and Read typeclass

● Members of the Show typeclass can be
represented as strings
● Use the show function

● Members of the Read typeclass can take
strings and a type that is a member of Read
● Use the read function

Enum typeclass

● Enum members can be enumerated
● They are sequentially ordered

● The pred and succ functions can be used on
these members
● succ 2
● pred 'b'

● Can be used in ranges
● ['a'..'z']
● [LT .. GT]

Numeric typeclasses
● Num is a numeric typeclass

● Members (Int, Integer, Float, Double) act like
numbers

● Integral is a typeclass for integer numbers
● Members are Int and Integer

● Floating is a typeclass for real numbers
● pi, exp, log, sqrt, sin, cos, tan etc...
● Members are Float and Double

● Fractional is a type class for number that
can be used in division

Standard Haskell Classes

Functions, again

● Pattern matching
● Specifies a pattern which some data should

conform
● If the data matches the pattern then that data is

deconstructed
magicNumber :: (Integral a) => a -> String

magicNumber 13 = “You won!”

magicNumber x = “You lose.”

More Pattern Matching

● Implementation of factorial

factorial :: (Integral a) => a -> a

factorial 0 = 1

factorial n = n * factorial (n - 1)

Pattern Matching, again

● Adding pairs
addPairs :: (Num a) => (a, a) -> (a,a) -> (a,a)

addPairs (a1, a2) (b1, b2) = (a1+b1, a2+b2)

● Ignoring values
second :: (Num a) => (a, a, a)

second (_, b, _) = b

Pattern Matching Lists
● Sum the elements in a list
sum' :: (Num a) => [a] -> a

sum' [] = 0

sum' (x:xs) = x + sum'(xs)

● Head of a list
head' :: (Num a) => [a] -> a

head' [] = error “Invalid list”

head' (x:_) = x

● Length of a list
length' :: (Num a) => [a] -> a

length'[] = 0

length' (_:xs) = 1 + length' xs

As Patterns

● As patterns match data whilst keeping a
reference to the whole thing

● Report the first letter
first' :: String -> String

first' "" = "Empty string, whoops!"

first' all@(x:xs) = "The first letter of "++all++" is "++[x]

Guards

● Guards are used to test the values of inputs to
functions
councilTaxBand :: (Num a) => a -> Char

councilTaxBand value

| value <= 40000 = 'A'

| value <= 52000 = 'B'

| value <= 68000 = 'C'

| value <= 88000 = 'D'

| value <= 120000 = 'E'

| value <= 160000 = 'F'

| value <= 320000 = 'G'

| otherwise 'H'

Where

● Where bindings a visible everywhere
● BMI calculator

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

 | bmi <= underweight = "Underweight"

 | bmi <= normal = "Normal"

 | bmi <= overweight = "Overweight"

 | otherwise = "Obese"

 where bmi = weight / height ^ 2

 (underweight, normal, overweight) = (18.5, 25.0, 30.0)

Let

● Let bindings are local
● Volume of a cone
volCone :: (Num a) => a -> a -> a

volCone radius height =

let thirdPi = 1/3 * pi

 rh = height * radius ^ 2

in thirdPi * rh

Currying
● Every Haskell function takes only 1 parameter!
● These two expressions are equivalent
(+) 7 3

((+) 7) 3

● (+) function is defined as
(+) :: Num a => a -> a -> a

(+) :: Num a => a -> (a -> a)

● Applying too few parameters will return a
partially applied function.

More Currying

● Consider the following function
addThree :: (Num a) => a -> a -> a -> a

addThree x y z = x + y + z

● Evaluate addThree 6 3 9
● 6 is applied and a partially applied function is

returned
● 3 is applied to the partially applied function

and returns another partially applied function
● 9 is applied to this new partially applied

function and a value is returned

Currying Example

● Multiply by 4

multFour :: (Num a) => a → a

multFour = (* 4)

Map and Filter

● map is a function that takes a function and
applied it to every element in the list
map (+7) [1,2,3,4,5] == [8,9,10,11,12]

● filter is a function that takes a predicate
function and returns a list whose elements
satisfy the predicate
filter (< 9) [4,6,9,10,45,3] == [4,6,3]

Lambdas

● Useful for when you only need a function once
● Anonymous functions using \ character
map (\x -> 7 + x) [1,2,3,4,5] == [8,9,10,11,12]

filter (\x -> x < 9) [4,6,9,10,45,3] == [4,6,3]

What I Didn't Tell You

● How to define your own typeclasses and types
● Functors, Applicative Functors, Monoids and

Monads
● Haskell wraps up IO in an IO Monad
● Haskell can implement code in modules
● But all that will be in a future talk

Haskell Resources

● Haskell.org
● One stop shop for everything Haskell
● http://www.haskell.org/

● Learn You a Haskell for Great Good! by Miran
Lipovača.
● http://learnyouahaskell.com/

● A Gentle Introduction to Haskell by P. Hudak, J.
Peterson, and J. Fasel
● http://www.haskell.org/tutorial/

http://learnyouahaskell.com/

More Haskel Resources

● Try Haskell
● http://tryhaskell.org/

● The Haskell 2010 report
● http://www.haskell.org/onlinereport/haskell2010/

http://tryhaskell.org/
http://www.haskell.org/onlinereport/haskell2010/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

