
  

Haskell – An Introduction



  

What is Haskell?

● General purpose
● Purely functional

● No function can have side-effects
● IO is done using special types

● Lazy
● Strongly typed

● Polymorphic types

● Concise and elegant



  

A First Look

● Provides a REPL
● ghci is the reference implementation

● But there's compiler – unfortunately we won't 
see the compiler in this talk!



  

Functions: 101

● Functions are called thus:

func arg1 [argN+]
● Examples

id 5

succ 'a'

even 7

odd 3



  

Functions: The Basics

● A function that doubles its argument

doubleArg x = 2 * x

● A function that doubles odd arguments and 
returns even ones

doubleOddArg x = if odd x then 
(2*x) else x

● Let's define and use these in the REPL.



  

Lists

● Lists in Haskell are homogenous
● Store several elements of the identical type.

● Here's a list of integers

[1,2,3,4,5]

● Concatenating two lists

[1,2,3,4,5] ++ [6,7,8,9,10]

● Prepending an element

1:[2,3]



  

More on Lists

● Head
head [1,2,3,4,5] == 1

● Tail
tail [1,2,3,4,5] == [2,3,4,5]

● Last
last [1,2,3,4,5] == 5

● Init
init [1,2,3,4,5] = [1,2,3,4]



  

Yet more on Lists

● Get an element by its index (indexing starts at 0)
[1,2,3,4,5] !! 2

● Does a thing exist in a list
4 `elem` [1,2,3,4,5]

● Length of a list
length [1,2,3,4,5]

● Taking values
take 3 [1,2,3,4,5]



  

Last List

● Reverse
reverse [1,2,3,4,5]

● Drop elements from beginning of list
drop 3 [1,2,3,4,5]

● Sum elements
sum [1,2,3,4,5]

● Product of elements
product [1,2,3,4,5]



  

Ranges

● Can create a list with a sequence of values

[1..20] is a list containing numbers 1 to 20.

['a'..'z'] is a list containing lowercase letters.

● Creating a range with a step

[2,4..20] is a list of even numbers between 2 
and 20

['a','c'..'z'] is a list of the letters a, c, e, g, I, 
k , m, o, q, s, u, w, and y.

[20,19..1] is a list of numbers from 20 to 1.



  

Infinite Lists

● Infinite list with a range

[1..] an infinite list of numbers starting at 1.

● The cycle function

cycle [1,2,3] generates an infinite list 
[1,2,3,1,2,3,1,2,3...]

● The repeat function

repeat 7 generates an infinite list of 7s.



  

List Comprehensions

● Apply a function to each element in a list

[x*2 | x <- [1,2,3,4,5]]

● For each number in the range [1,2,2,3,5]
● x is bound to the current number

● The function x*2 is applied to x

● We can filter the list(s)

[x*2 | x <- [1,2,3,4,5], odd x]

[x*y | x <- [1..4], y <- [1..4], 
x /= 3, y /= 2]



  

Tuples

● Store several values of different type
● Useful for when you know exactly how many 

values you'll combine
● Tuples type depends on how many components 

it has and the types of the components
● E.g. A list of tuples is type safe:

(3,'c',9):[(1,'a'),(4,'d'),(7,'g')]

is illegal!



  

Tuples continued

● Singleton tuples cannot exist
● It's just a value!

● Pairs, though, have their own functions
● fst – returns the first element a 2-tuple

● snd – returns the second element of a 2-tuple

● Lists of pairs can be generated from two lists 
using the zip function

zip [1,2,3] ['a','b','c']

creates the list [(1,'a'),(2'b'),(3,'c')]



  

A Problem

● Find Isosceles 
triangles, that have 
integer length sides, 
whose perimeter is 
less than 6 units in 
length. Using 
1<=a<=5 and 
1<=b<=10.



  

Types

● Haskell is statically and strongly typed
● Uses type inference

● Hindley-Milner type system
● The programmer doesn't need to inform the 

compiler of a value's type.

● We can use the :t command to interrogate 
Haskell as to the type of a value
● Scalar types: Bool, Int, Integer, Char
● Lists: [ ], [Char]
● Tuples: (Int, Bool), (Bool, [Char])



  

Common Types

● Int – Bounded integer type. On 32-bit 
platforms the range is [-2147483648 ,
2147483647]

● Integer – Unbounded integer type

● Float – Single precision floating point

● Double – Double precision floating point

● Bool – Boolean type, True and False values

● Char – Character type, single quotes used, e.g. 
'a'



  

Function Types

● A function, say, addThreeInts

addThreeInts :: Int -> Int -> Int -> Int

addThreeInts x y z = x + y + z

● :: is read as “has type of”

● This function take three Int types and returns 
an Int type

● The last type is the return type

● :t addThreeInts returns

addThreeInts :: Int -> Int -> Int -> Int



  

More Function Types

● :t removeUppercase returns

removeUppercase :: [Char] -> [Char]

● This function takes a list of characters, a string, 
and returns a list of characters.
● The String type is usually used

● It is type synonym for [Char]



  

Typeclasses
● A typeclass is an interface that defines some 

behaviour
● They are similar to Java interfaces

● :t (==) returns

(==) :: Eq a => a -> a -> Bool

● The equality function takes two values of the 
same type, a.
● The type a must a member of the Eq typeclass

● It is a class constraint

● The equality function returns a boolean value



  

Ord typeclass

● :t (>=) returns

(>=) :: Ord a => a -> a -> Bool

● Ord is a typeclass that defines the comparison 
functions >, <, >=, <=

● Compare with the compare function!
● :t compare returns

compare :: Ord a => a -> a -> Ordering

● The Ordering type can hold the values GT, LT 
or EQ.



  

Show and Read typeclass

● Members of the Show typeclass can be 
represented as strings
● Use the show function

● Members of the Read typeclass can take 
strings and a type that is a member of Read
● Use the read function



  

Enum typeclass

● Enum members can be enumerated
● They are sequentially ordered

● The pred and succ functions can be used on 
these members
● succ 2
● pred 'b'

● Can be used in ranges
● ['a'..'z']
● [LT .. GT]



  

Numeric typeclasses
● Num is a numeric typeclass

● Members (Int, Integer, Float, Double) act like 
numbers

● Integral is a typeclass for integer numbers
● Members are Int and Integer

● Floating is a typeclass for real numbers
● pi, exp, log, sqrt, sin, cos, tan etc...
● Members are Float and Double

● Fractional is a type class for number that 
can be used in division



  

Standard Haskell Classes



  

Functions, again

● Pattern matching
● Specifies a pattern which some data should 

conform
● If the data matches the pattern then that data is 

deconstructed
magicNumber :: (Integral a) => a -> String

magicNumber 13 = “You won!”

magicNumber x = “You lose.”



  

More Pattern Matching

● Implementation of factorial

factorial :: (Integral a) => a -> a

factorial 0 = 1

factorial n = n * factorial (n - 1)



  

Pattern Matching, again

● Adding pairs
addPairs :: (Num a) => (a, a) -> (a,a) -> (a,a)

addPairs (a1, a2) (b1, b2) = (a1+b1, a2+b2)

● Ignoring values
second :: (Num a) => (a, a, a)

second (_, b, _) = b



  

Pattern Matching Lists
● Sum the elements in a list
sum' :: (Num a) => [a] -> a

sum' [] = 0

sum' (x:xs) = x + sum'(xs)

● Head of a list
head' :: (Num a) => [a] -> a

head' [] = error “Invalid list”

head' (x:_) = x

● Length of a list
length' :: (Num a) => [a] -> a

length'[] = 0

length' (_:xs) = 1 + length' xs



  

As Patterns

● As patterns match data whilst keeping a 
reference to the whole thing

● Report the first letter
first' :: String -> String  

first' "" = "Empty string, whoops!"  

first' all@(x:xs) = "The first letter of "++all++" is "++[x]



  

Guards

● Guards are used to test the values of inputs to 
functions
councilTaxBand :: (Num a) => a -> Char

councilTaxBand value

| value <= 40000 = 'A'

| value <= 52000 = 'B'

| value <= 68000 = 'C'

| value <= 88000 = 'D'

| value <= 120000 = 'E'

| value <= 160000 = 'F'

| value <= 320000 = 'G'

| otherwise 'H' 



  

Where

● Where bindings a visible everywhere
● BMI calculator

bmiTell :: (RealFloat a) => a -> a -> String  

bmiTell weight height  

    | bmi <= underweight = "Underweight"  

    | bmi <= normal = "Normal"  

    | bmi <= overweight = "Overweight"  

    | otherwise = "Obese"  

    where bmi = weight / height ^ 2  

        (underweight, normal, overweight) = (18.5, 25.0, 30.0)



  

Let

● Let bindings are local
● Volume of a cone
volCone :: (Num a) => a -> a -> a

volCone radius height = 

let thirdPi = 1/3 * pi

  rh = height * radius ^ 2

in thirdPi * rh



  

Currying
● Every Haskell function takes only 1 parameter!
● These two expressions are equivalent
(+) 7 3

((+) 7) 3

● (+) function is defined as
(+) :: Num a => a -> a -> a

(+) :: Num a => a -> (a -> a)

● Applying too few parameters will return a 
partially applied function.



  

More Currying

● Consider the following function
addThree :: (Num a) => a -> a -> a -> a

addThree x y z = x + y + z

● Evaluate addThree 6 3 9
● 6 is applied and a partially applied function is 

returned
● 3 is applied to the partially applied function 

and returns another partially applied function
● 9 is applied to this new partially applied 

function and a value is returned



  

Currying Example

● Multiply by 4

multFour :: (Num a) => a → a

multFour = (* 4)



  

Map and Filter

● map is a function that takes a function and 
applied it to every element in the list
map (+7) [1,2,3,4,5] == [8,9,10,11,12]

● filter is a function that takes a predicate 
function and returns a list whose elements 
satisfy the predicate
filter (< 9) [4,6,9,10,45,3] == [4,6,3] 



  

Lambdas

● Useful for when you only need a function once
● Anonymous functions using \ character
map (\x -> 7 + x) [1,2,3,4,5] == [8,9,10,11,12]

filter (\x -> x < 9) [4,6,9,10,45,3] == [4,6,3]



  

What I Didn't Tell You

● How to define your own typeclasses and types
● Functors, Applicative Functors, Monoids and 

Monads
● Haskell wraps up IO in an IO Monad
● Haskell can implement code in modules
● But all that will be in a future talk



  

Haskell Resources

● Haskell.org
● One stop shop for everything Haskell
● http://www.haskell.org/

● Learn You a Haskell for Great Good! by Miran 
Lipovača.
● http://learnyouahaskell.com/

● A Gentle Introduction to Haskell by P. Hudak, J. 
Peterson, and J. Fasel
● http://www.haskell.org/tutorial/

http://learnyouahaskell.com/


  

More Haskel Resources

● Try Haskell
● http://tryhaskell.org/

● The Haskell 2010 report
● http://www.haskell.org/onlinereport/haskell2010/

http://tryhaskell.org/
http://www.haskell.org/onlinereport/haskell2010/
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